עקומת שווה עליות איזוקוסט Isocost

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "עקומת שווה עליות איזוקוסט Isocost"

Transcript

1 עקומת שווה עליות איזוקוסט Isocost כפי שראינו בפרק הקודם, אומנם נוכל לראות את הבחירה האלטרנטיבית של היצרן אך לא נוכל לקבל תשובה מהו הייצור האופטימאלי של היצרן. ישנם גורמים טכניים רבים מידי כדי לקבל החלטה זו. כדי לדעת את המיקום המדויק של היצרן בעקומת הייצור כפונקציה של גורמי הייצור חייבים להכניס למשוואה את העלויות של גורמי הייצור השונים. אנחנו מניחים שמטרת הפירמה הינו למקסם רווחים גם על ידי הורדת עלויות, לכן הפירמה תייצר באופן יעיל כך שעלות התפוקה תהיה מינימאלית. גורם ייצור משתנה אחד נניח במצב הפשוט של גורם ייצור משתנה אחד עבודה. כדי לקבל החלטה מהי הכמות האופטימאלית של עבודה, הפירמה צריכה את הנתונים הבאים: מחיר גורם הייצור יעילות הייצור של גורמי הייצור (כמה מייצרת בזמן נתון) מחיר המוצר אשר נמכר על ידי הפירמה כדי להקל עלינו בשלב הזה, נניח שהפירמה בתחרות מושלמת ולכן אין לה שליטה על מחירי גורמי הייצור (שכ"ע) ומחירי התפוקה שהיא מייצרת (מחיר השוק). תחת הנחות אלו אנחנו יכולים להגיד שכמות האופטימאלית שהפירמה תצרוך מגורם הייצור הינה הכמות שבה הגורם הייצור משלם בעד עצמו. בעבודה, ערכו של הכמות הפיזי המיוצר על ידי הגורם הייצור שווה למחיר גורם הייצור עצמו. - מוצר הפיזי השולי Marginal hysical roduct נניח שה MM של 0 עובדים הנו 4 טון. נניח שהפירמה מקבלת 7.50 לטון. ה- VM של 0 עובדים הינו אם השכר היומי של העובדים הינו הפירמה תעסיק רק 0 עובדים. ההיא לא תעסיק 1 עובדים כי אז השכר יהיה יקר יותר מה- VM (זכרו, תפוקה שולית עמ' 1

2 פוחתת). הפירמה לא תעסיק 19 עובדים כי היא יכולה למקסם את הרווח על ידי העסקת 0 עובדים. מהו האופטימום ייצור ושימוש בגורם הייצור? אנו רואים כי כאשר המחיר של הג"י שווה לערך ה- MM שם כדאי ליצר. כל ארגון ישתמש במשאב כלשהו עד לנקודה שבה התרומה של תוספת יחידה אחת של גורם הייצור שווה לויתור שצריכים כדי לרכוש את אותו גורם ייצור. MC VM תשומה עובדים תפוקה M מחיר תשומה מחיר תפוקה X M = VM מחיר תפוקה מחיר תשומה/ M = MC ניקח את הדוגמא של גורים ייצור עבודה משתנה כפי שראנו בפרק הקודם. אמרנו שכדי לראות איפה הייצרן ייצור באזור נצטרך להוסיף עלויות ספציפיות או לחילופין להגדיר את עק' הביקוש לעובדים של הפירמה. את עקומת הביקוש לעובדים נוכל לגזור מעקומת הייצור של הפירמה אך אנו נראה כי ניתן לזהות שני מצבים בביקוש לעובדים, טווח קצר וטווח ארוך. כמו כן, נצטרך להכליל בניתוח את המצב של מבקש העבודה האם המעביד פועל בתחרות מושלמת או בתחרות חלקית (ללא השפעה או בעל השפעה). עמ'

3 ביקוש לעובדים טווח קצר תחרות מושלמת כדי לראות איך "איזור היצור" מתייחס לעובדים, נוכל להפוך את עק' T ו- M למספרים היפותטיים ולהפוך את הניתוח מתפוקה לכסף. VM Mx MR TR/ L פדיון TR יח' עבודה L מחיר המוצר M T מחיר המוצר של $ מראה כי הפירמה כאן הנה פירמה בתחרות מושלמת, היא איננה יכולה להשפיעה על המחיר. עקומת הביקוש למוצר של הפירמה הינה גמישה לחלוטין. היא "לוקחת מחירים של השוק" ואיננה משפיעה על המחיר. ה- MR הינו השינוי בפדיון אשר נובע מתוספת של יח' אחת של עבודה. עמודה 1 ו- 6 מהווים את עקומת הביקוש של הפירמה לעובדים בטווח הקצר. פירמה המחפשת מקסימום רווחים, תעסיק עובדים כך שכל עובד נוסף תורם יותר לפדיון מאשר לעלויות. התרומה של העובד לעלויות נקרא "עלות שכר שולי " MWC marginal wage cost ומוגדר כשינוי בעלויות השכר כתוצאה מהוספת יח' עבודה נוספת. נוכל לקצר ולהגיד כי המעסיק ימשיך לגייס עובדים נוספים עד אשר.MR=MWC (ה-.(MC הינו גם העלות השולית, כלומר MWC נניח שהמעביד מעסיק עובדים בתנאים תחרותיים. כמו כן, המעסיק הנו מספיק קטן כך שאיננו משפיע על רמת השכר במשק. רמת השכר נתון למעביד (כמו חוק שכר מינימום) וכך, עלות השכר של המעביד עולה בכמות השכר W של כל עובד נוסף. נוכל להגיד ש- MR=MWC=W עמ' 3

4 נניח לדוגמא כי רמת השכר במשק הינו $ 3.99 ליום עבודה. הפירמה תחליט להעסיק 5 עובדים כי ברמה הזאת.MR=W הפירמה כמובן לא תעסיק עובדים מעל למספר זה. נניח שהשכר ירד ל דולר ליום. הפירמה רואה לפניה כעת ירידה של עלויות השכר וכעת תעסיק יותר עובדים. ניתן להעסיק כאן כי עק' MR הנה גם עקומת הביקוש לעובדים של הפרימה בטווח הקצר. נק' נוספת חשובה. כאשר ישנה תחרות מושלמת עק' MR של הפירמה הינה גם עק' VM ערך המוצר השולי. זהו תפוקה הנוספת במונחים כספיים אשר נתרם לחברה (משק) כאשר מעסיקים יח' נוספת של עבודה. במקרה שלנו עק'.VM=MR ביקוש לעובדים טווח קצר תחרות חלקית תחרות חלקית הינה המצב שבו הפירמה יכולה להשפיע על מחירי השוק אזי יש לה מעט כוח מונופוליסטי. ארבעת המבנים הכלכליים / חברתיים האפשריים של משק הינם: תחרות מושלמת, מונופול, אוליגופול ותחרות מונופוליסטית. בעקבות השינוי במצב החברה (השפעה על המחירים) עקומת הביקוש למוצר של החברה יורדת משמאל לימין ואיננה גמישה לחלוטין. כלומר הפירמה תצטרך להוריד את המחיר של מוצריה כדי למכור את התפוקה של כל עובד בעבודה. כמו כן, היא מורידה את המחיר לא רק על התפוקה של העובד האחרון אלא על התפוקה של כל העובדים. כדי לקבל את התוספת השולי לפדיון צריכים לנכות את ההפסד מהפדיון כתוצאה מההוספה לפדיון של היחידה הנוספת. עמ' 4

5 כאן עק' ה- M של הפירמה יורדת משתי סיבות. כמו בתחרות מושלמת, מחיר המוצר נופל ככל אך בנוסף, כתוצאה מהעסקת יותר עובדים. שהתפוקה גדלה. VM Mx MR TR/ L פדיון TR יח' עבודה L מחיר המוצר M T אם נסתכל על הטבלה נראה שהתוספת של עובד חמישי מביא למשק ערך נוסף של 8.80 דולר ייצור ומכירה של 1 יח' במחיר.40 דולר ליח'. אך ה- MR של החברה הינה! דולר פחות. למה? היות וכדי למכור את ה- 1 יחידות הנוספות החברה הייתה צריכה למכור את ה- 15 יח' הנוספת במחיר נמוך יותר של 0.0 דולר ליח'. כעקרון נוכל למצוא כי גם כאן W=MR הנה המצב של הפרימה. כלומר הפירמה תעסיק עובדים עד הרמה שבו תוספת השכר שווה לתוספת לפדיון. אך להבדיל מתחרות מושלמת, נמצא כאן כי במצב של תחרות חלקית או מצב תחרות מונופוליסטי בשוק, עק' הביקוש של הפירמה לעובדים במצב כזה הינה פחות גמישה מעק' הביקוש של הפירמה בתחרות מושלמת. כאן נמצא שפירמה אשר לה אפיונים מונופוליסטים הינה פחות רגישה לשינויים בשכר ונטייתה להוסיף פחות עובדים ככל שהשכר יורד הינה ההשתקפות של מדיניות החברה להגביל את התפוקה בשוק כדי לשמור על רמת מחירים גבוהה. עמ' 5

6 נראה גם שעק' VM הינה ימינה מעק' MR של הפירמה. כלומר, התוספת לפדיון של הפירמה פחות מהתוספת של ערך התפוקה לשוק. ביקוש לעובדים טווח ארוך עד כה הדיון התמקד בשני גורמי ייצור לפירמה עבודה L והון K כאשר ההנחה הייתה כי הון קבוע. כעת בטווח הארוך נשחרר את ההנחה הזו ונסתכל על פירמה עם שני גורמי יצור משתנים, עבודה L והון K T LR = f ( L, K ) הביקוש לעובדים בטווח הארוך הינו העקומה אשר מגדירה את כמות העובדים הפירמה תעסיק בכל רמת שכר אפשרית כאשר גם העובדים וגם ההון הינם גורמי ייצור משתנים. כעקרון, עק' הביקוש לעובדים בטווח הארוך יורד כי שינוי ברמת השכר יוצר אפקט התפוקה בטווח הקצר ואפקט ההחלפה בטווח הארוך. אפקט התפוקה בהתייחסות לביקוש לעובדים, אפקט התפוקה הינו השינוי בהעסקת עובדים אשר מושפע אך ורק מהשפעת שינוי השכר על עלויות הייצור של המעביד. נוכל לראות כי הקטנת השכר מקטין את העלות השולית של העובד הנוסף למעסיק, ובכך הפירמה יכולה לייצר תוספת תפוקה בעלות נמוכה יותר מבעבר. בהתאם לחוק,MR=MC המעסיק ימצא כי כדאי לו לייצר יותר ובכך יגייס עובדים נוספים. אפקט ההחלפה בהתייחסות לביקוש לעובדים, אפקט ההחלפה הינו השינוי בהעסקת עובדים אשר מושפע ישירות משינוי במחיר היחסי של עבודה, כאשר התפוקה קבועה. עמ' 6

7 בטווח הקצר, הון קבוע ולכן תחלופה בין עובדים להון לא יכולה להתבצע, אך בטווח הארוך הון איננו קבוע וייתכן מעבר בין הון לעובדים כאשר השכר נמוך יותר. כלומר, התגובה בטווח הארוך לירידה בשכר תהיה גדולה יותר מאשר השינוי בטווח הקצר. נוכל לייחס את הדיון כאן לעליית השכר ומה יקרה עם אפקט ההכנסה. אם במצב של הורדת שכר, יחליפו הון תמורת עובדים, במצב של עליית שכר, יחליפו עובדים תמורת הון. שילוב האפקטים בגרף אנו רואים את שני המצבים. עק' D SR מציין את עק' הביקוש לעובדים בטווח הקצר ועק' D LR מראה את הטווח הארוך. נק' ההתחלה הינה נק' a שבו יש שיווי משקל בין שכר לעובדים. כעת, יש תהליך של הורדת שכר אשר גורם לעליית מספר העובדים מ- Q למצב של Q. 1 זהו אפקט התפוקה אשר מתקיים בטווח הקצר. בטווח הארוך, הפירמה רואה כי עכשיו כדאי לוותר על הון כי ניתן להשיג עובדים במחירים זולים יותר ומכיוון שהון הינו גורם יצור משתנה נחליף הון בעובדים. בכך אפקט התחלופה יגרום להגדלת מספר העובדים מ- Q 1 ל- Q בנק' C. שינוי בטווח הקצר הינו מ- a ל- b ואילו השינוי בטווח הארוך מ- b ל- c. נק' a ו- c קובעים את המיקום של עק' הביקוש לעובדים בטווח הארוך של הפירמה וכפי שניתן לראות העק' גמישה יותר מעק' הטווח הקצר. עמ' 7

8 שני גורמי ייצור משתנים מה קורה כאשר שני גורמי ייצור משתנים ופירמה יכולה להרחיב או לצמצם את התפוקה על ידי שימוש יתר או פחות של אחד או שני גורמי הייצור. הצגנו את נושא.Isoquant כאן נציג את נושא.Isocost כפי שראינו שאיזוקוונט הינו עקומה שווה כמויות, איזוקוסט הינה עקומה שווה עלויות. כלומר בכל נקודה ונקודה על העקומה, על ידי שילוב של שני גורמי ייצור שונים, נקבל את אותה עלות ייצור. חברה מסויימת יכולה לייצר על ידי שילוב של מכונות ועובדים. נניח כי החברה יכולה לרכוש מכונה במחיר M אשר תיתן לה תפוקה כלשהו. החברה רוכשת את המכונה על ידי לקיחת הלוואה ב- i אחוזי ריבית לשנה. לפיכך, העלות של אחזקת M תהיה.r=iM כמו כן, נניח שעובד מרוויח שכר w. לפיכך העלות של העובד לפירמה הינו w. אם נחבר את העלויות של הפירמה נמצא כי: C = wl + rk סה"כ עלות = עלות העובדים + עלות ההון אם נחשב את המשוואה ל- K נמצא כי: למשוואה הנ"ל מכנים פונקצית K = C r w r.isocost L עק' איזוקוסט מראה את הצירופים האפשריים של גורמי ייצור אשר ניתן להפעיל בעלות ייצור נתונה. עמ' 8

9 שיפוע קו האיזוקוסט הינו L K שהוא המחיר של גורם ייצור עבודה חלקי מחיר גורם הייצור הון. לחברה יכולה להיות מספר עק' איסוקוסט כאשר כל אחד מייצג עלות מסוימת של שילוב גורמי ייצור. ככל שהאיזוקוסט יותר למעלה וימינה העלויות גבוהות יותר וככל שיותר לכיוון הראשית העלויות נמוכות יותר. מה קורה כאשר מגדילים את הייצור האם השיפוע של עק' איזוקוסט משתנה? אנחנו רואים כי שינוי בגורמי ייצור אינו בהכרח משנה את העלות של גורמי הייצור אלא את המיקום של העק'. אנו רואים כי אם השיפוע של העק' נשארת קבועה אז מחירי גורמי הייצור אינם משתנים. מהי הנקודה האופטימאלית לייצור לייצר. כדי להגיע לתשובה על הייצור להתוות את עק' האיזוקוונט עם עק' האיזוקוסט ולהגיע לאופטימום. נק' האופטימאלית תהיה נק' ההשקה בין עק' האיזוקסוט לעק' האיזוקוונט. בכל נק' אחרת לא יהיה כדאיות לייצור, למשל נק' C. כאן, הפרימה יכולה למקסם את רווחיה עם תשנה את גורמי היצור שלה כך לייצר על נק' A. קו S בגרף נקרא קו ההרחבה.Expansion path בקו הזה אנחנו מחברים את כל נק' ההשקה השונות של עק' איזוקוונטים עם עק' איזוקוסטים. עק' S מסמלת את כל הנק' השילוב האופטימאליות בין גורמי ייצור משתנים. הפירמה תרחיב ותצמצם את הייצור על קו S. בנק' ההשקה בין עק' איזוקוסט ועק' איזוקוונט נמצע שהשיפועים שווים כלומר L L L K MRTS = = = K M M K K M K M L L עמ' 9

10 כלומר אם שע"מ עולה כפול משעת עבודה המוצר הפיזי השולי של המוכנה צריכה להיות כפליים מזה של עובד. פונקצית הייצור הינה הקשר בין עלויות ותפוקה. פונקצית הייצור של הפירמה ומחיר התשומות קובעים את פונקצית העלות של הפירמה. בקביעת התפוקה ועלויות אנחנו מבינים בין שני מצבים, טווח הקצר וטווח הארוך. טווח הקצר בטווח הקצר העלויות של הפירמה מחולקות לעלויות משתנות ועלויות קבועות. עלויות קבועות הינן עלויות שהפירמה תשלם גם עם היא איננה מייצרת תפוקה כלשהו. עלויות משתנות הינן עלויות אשר משתנות עם כמות התפוקה. המצב הפשוט ביותר לפירמה בטווח הקצר הינו להניח כי העלות המשתנה קבועה בטווח הקצר. כלומר, עם גידול התפוקה והשימוש בגורם הייצור המשתנה, מחיר גורם הייצור איננו משתנה והוא קבוע ליח' תשומה. נניח כי ההוצ' הקבועה לפירמה הינה $ 1000 ומחיר יח' תשומה הינה $0.50 ליח'. נוכל לבנות את לוח העלויות של הפירמה. תפוקה ביח' סה "כ עלות קבועה עלות משתנה ממוצעת סה "כ עלות משתנה סה ת "כ עלו עלות ממוצעת נק' האיזון על ידי שימוש בנתונים של הטבלה נוכל להרכיב את עק' נק' האיזון. הנתון הנוסף שצריכים הינו מחיר המכירה. נניח הפירמה יכולה למכור עמ' 10

11 את התפוקה במחיר של $1 ליח'. (גמישות הביקוש גמיש לחלוטין. הפירמה רואה מחיר יחיד). כלכלת תעשיה נוכל לחשב את נוסחת נק' איזון π = TR TC π = Q VC Q FC π = Q ( VC) FC Q = π + FC ( VC) נק' האיזון הנו פונקציה של הרווח וההוצ' הקבועה חלקי ההפרש בין מחיר מכירה ליח' לעלות המשתנה. לרמת רווח אפס נק' האיזון הינו ההוצ' הקבוע חלקי הפרש מחיר מכירה לעלות המשתנה. בכמויות מתחת לכמות נק' איזון, הפירמה מפסידה כסף ולכן היא תגדיל את הייצור עד לנק' האיזון. מנק' האיזון הפירמה תייצר ברווח וכמובן מנסה למקסם את רווחיה. עמ' 11

12 כפילות של פונקצית עלות וייצור מבט מהיר על הגרף של פונקציות העלות מראה כי היא היפוכה של עק' התפוקה. השיפוע של עק TVC הוא העלות השולית MC (נק' A). בנק' A השיפוע הוא AB/OB שזה גם ההוצאה המשתנה הממוצעת.AVC כך בנק' A.MC=AVC בנק' זו AVC הינו מינימאלי. כפי שרואים בנק' A גם ה- A הוא מקסימאלי. מכאן נגזר עק' עלויות קונבנציונאליות של פונקציות עלויות. בהנחה כי Q הנו התפוקה לתקופה כלשהי TVC סך הוצ' משתנות, TFC סך הוצ' קבועות ו- TC סך העלויות נקבל כדלקמן: עמ' 1

13 = TVC/Q הוצ' משתנות ממוצעות = TFC/Q הוצ' קבועות ממוצעות TVC = MC = הוצ' שוליות Q TC TVC AC = = + Q Q TFC Q = הוצ' ממוצעות נק' המינימום בעק' AVC ו- AC הם נק' מינימום לתפוקה שהם מייצגים. כלומר, הנק' על כל העקומות הם בעצם נק' המינימום לאורך כל העק' אשר מבטאות את נק' המינימום אשר הינם המשיקים בין עק' האיזוקוונטים ואיזוקוסטים. עק' עלויות טווח ארוך בטווח הארוך כל ג"י משתנים. הפירמה מגדילה את התפוקה על ידי בניית קוים ומפעלים חדשים. היחסים בין תפוקות ותשומות הם אלו של תשואה לגודל. כדי לראות את עק' העלויות לטווח ארוך לוקחים את כל הנקודות המינימאליות בטווחים הקצרים אשר נמצים על עק' ההרחבה ומחברים אותם ביחד. זה נותן את עק' העלויות לטווח ארוך ראה עק' TC לגבי יתרונות לגודל, בהתחלה אנחנו רואים את העלות הממוצעת כאשר היא יותרד עם גידול התפוקה. זה תשואה עולה לגודל. במשך הזמן, עם גידול התפוקה, אנו רואים תשואה יורדת לגודל. עמ' 13

14 שינויים במחירי גורמי יצור ושינויים טכנולוגים כאשר יש שינוי במחיר גורם ייצור או שיפור טכנולוגי נראה כי כדאי לפירמה לחליף את גורם הייצור היקר יותר בג"י הזול יותר. השתנה יחס המחירים בין הגורמים. זה יעלה את עק' קו ההרחבה. עמ' 14

קורס: מבוא למיקרו כלכלה שיעור מס. 17 נושא: גמישויות מיוחדות ושיווי משקל בשוק למוצר יחיד

קורס: מבוא למיקרו כלכלה שיעור מס. 17 נושא: גמישויות מיוחדות ושיווי משקל בשוק למוצר יחיד גמישות המחיר ביחס לכמות= X/ Px * Px /X גמישות קשתית= X(1)+X(2) X/ Px * Px(1)+Px(2)/ מקרים מיוחדים של גמישות אם X שווה ל- 0 הגמישות גם כן שווה ל- 0. זהו מצב של ביקוש בלתי גמיש לחלוטין או ביקוש קשיח לחלוטין.

Διαβάστε περισσότερα

ההוצאה תהיה: RTS = ( L B, K B ( L A, K A TC C A L K K 15.03

ההוצאה תהיה: RTS = ( L B, K B ( L A, K A TC C A L K K 15.03 15.01 o פונקצית הוצאות של הטווח ה ארוך על מנת למקס ם רו וחי ם על פירמה לייצר תפו קה נתונה במינימום הוצא ות. נניח שמחירי גורמי הייצור קבועים. נגדיר עק ומת שוות הוצאה: כל הק ומבינציות של ו- שעבורן רמת ההוצאת

Διαβάστε περισσότερα

פונקציית ההוצאות המשך היצע הפירמה מערכות ביקוש והיצע

פונקציית ההוצאות המשך היצע הפירמה מערכות ביקוש והיצע פונקציית ההוצאות המשך היצע הפירמה מערכות ביקוש והיצע הוצאות בטווח הקצר והארוך טווח קצר חלק מגורמי הייצור קבועים טווח ארוך כל גורמי הייצור משתנים בטווח הקצר ישנן הוצאות שאינן תלויות ברמת התפוקה ונובעות

Διαβάστε περισσότερα

נגזר ות צולבות F KK = 0 K MP יריבים אדישים מסייעים MP = = L MP X=F(L,K) שני: L K X =

נגזר ות צולבות F KK = 0 K MP יריבים אדישים מסייעים MP = = L MP X=F(L,K) שני: L K X = 4. < > בניתוח של הטווח הארוך נניח שהפירמה מייצרת מוצר באמצעות שני גורמי יצור משתנים: עבודה ומכונות. נגדיר את פונ קצית הייצור: התפוקה המקסימאלית שניתן לייצור באמצעות צירוף, של תשומות: פונקצית הייצור בטווח

Διαβάστε περισσότερα

גמישויות. x p Δ p x נקודתית. 1,1

גמישויות. x p Δ p x נקודתית. 1,1 גמישויות הגמישות מודדת את רגישות הכמות המבוקשת ממצרך כלשהוא לשינויים במחירו, במחירי מצרכים אחרים ובהכנסה על-מנת לנטרל את השפעת יחידות המדידה, נשתמש באחוזים על-מנת למדוד את מידת השינויים בדרך כלל הגמישות

Διαβάστε περισσότερα

רחת 3 קרפ ( שוקיבה תמוקע)שוקיבה תיצקנופ

רחת 3 קרפ ( שוקיבה תמוקע)שוקיבה תיצקנופ - 41 - פרק ג' התנהגות צרכן פונקצית הביקוש(עקומת הביקוש ( - 42 - פרק 3: תחרות משוכללת: התנהגות צרכן מתארת את הקשר שבין כמות מבוקשת לבין מחיר השוק. שיפועה השלילי של עקומת הביקוש ממחיש את הקשר ההפוך הקיים

Διαβάστε περισσότερα

פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur

פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur פתרון תרגיל --- 5 מרחבים וקטורים דוגמאות למרחבים וקטורים שונים מושגים בסיסיים: תת מרחב צירוף לינארי x+ y+ z = : R ) בכל סעיף בדקו האם הוא תת מרחב של א } = z = {( x y z) R x+ y+ הוא אוסף הפתרונות של המערכת

Διαβάστε περισσότερα

בסל A רמת התועלת היא: ) - השקה: שיפוע קו תקציב=שיפוע עקומת אדישות. P x P y. U y P y A: 10>6 B: 9>7 A: 5>3 B: 4>3 C: 3=3 C: 8=8 תנאי שני : מגבלת התקציב

בסל A רמת התועלת היא: ) - השקה: שיפוע קו תקציב=שיפוע עקומת אדישות. P x P y. U y P y A: 10>6 B: 9>7 A: 5>3 B: 4>3 C: 3=3 C: 8=8 תנאי שני : מגבלת התקציב תנאי ראשון - השקה: שיפוע קו תקציב=שיפוע עקומת אדישות 1) MRS = = שיווי המשקל של הצרכן - מציאת הסל האופטימלי = (, בסל רמת התועלת היא: ) = התועלת השולית של השקעת שקל (תועלת שולית של הכסף) שווה בין המוצרים

Διαβάστε περισσότερα

הפתק מבוא לכלכלה סיכום הקורס. ייתכנו טעויות במסמך. אודה למי שיסב את תשומת לבי אליהן:

הפתק מבוא לכלכלה סיכום הקורס.  ייתכנו טעויות במסמך. אודה למי שיסב את תשומת לבי אליהן: 94591 מבוא לכלכלה, סיכום הקורס, עמוד 1 מתוך 82 הפתק www.hapetek.co.il מבוא לכלכלה 94591 סיכום הקורס ייתכנו טעויות במסמך. אודה למי שיסב את תשומת לבי אליהן: avi.bandel@gmail.com 94591 מבוא לכלכלה, סיכום

Διαβάστε περισσότερα

מבוא לכלכלה מיקרו כלכלה

מבוא לכלכלה מיקרו כלכלה חלק 1 מבוא לכלכלה מיקרו כלכלה סיכום החומר בקורס "מבוא לכלכלה" בטכניון (חלק 1) סיכם: אור גלעד המרצה: ד"ר מירה ברון מסמך זה הורד מהאתר. אין להפיץ מסמך זה במדיה כלשהי, ללא אישור מפורש מאת המחבר. מחברי המסמך

Διαβάστε περισσότερα

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m Observabiliy, Conrollabiliy תרגול 6 אובזרווביליות אם בכל רגע ניתן לשחזר את ( (ומכאן גם את המצב לאורך זמן, מתוך ידיעת הכניסה והיציאה עד לרגע, וזה עבור כל צמד כניסה יציאה, אז המערכת אובזרוובילית. קונטרולביליות

Διαβάστε περισσότερα

= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin(

= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin( א. s in(0 c os(0 s in(60 c os(0 s in(0 c os(0 s in(0 c os(0 s in(0 0 s in(70 מתאים לזהות של cos(θsin(φ : s in(θ φ s in(θcos(φ sin ( π cot ( π cos ( 4πtan ( 4π sin ( π cos ( π sin ( π cos ( 4π sin ( 4π

Διαβάστε περισσότερα

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשעד פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. לכל אחת מן הפונקציות הבאות, קבעו אם היא חח"ע ואם היא על (הקבוצה המתאימה) (א) 3} {1, 2, 3} {1, 2, : f כאשר 1 } 1, 3, 3, 3, { 2, = f לא חח"ע: לדוגמה

Διαβάστε περισσότερα

שווי משקל תחרותי עם ייצור

שווי משקל תחרותי עם ייצור שווי משקל תחרותי עם ייצור 1 התנהגות היצרן )תזכורת מחירים ב'( ma π = p -p s.t. = ƒ)( ma p ƒ)(-p בעיית הפירמה: או: 2 1 3 התנהגות היצרן )תזכורת מחירים ב'( * רווח במונחי p Slopes p * f ' p p f () תמונת ראי

Διαβάστε περισσότερα

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור הרצאה מס' 1. תורת הקבוצות. מושגי יסוד בתורת הקבוצות.. 1.1 הקבוצה ואיברי הקבוצות. המושג קבוצה הוא מושג בסיסי במתמטיקה. אין מושגים בסיסים יותר, אשר באמצעותם הגדרתו מתאפשרת. הניסיון והאינטואיציה עוזרים להבין

Διαβάστε περισσότερα

5 הדיחי םידבועל שוקיב

5 הדיחי םידבועל שוקיב מבוא לכלכלת עבודה יחידה 5 ביקוש לעובדים 5. הביקוש לעובדים 5. כללי עד כה עסקנו בהיצע העובדים בשוק העבודה ובחנו מספר שאלות מרכזיות מנקודת מבטו של הפרט הבודד: חלוקת זמנו של העובד בין פנאי ועבודה והגורמים

Διαβάστε περισσότερα

תרגול פעולות מומצאות 3

תרגול פעולות מומצאות 3 תרגול פעולות מומצאות. ^ = ^ הפעולה החשבונית סמן את הביטוי הגדול ביותר:. ^ ^ ^ π ^ הפעולה החשבונית c) #(,, מחשבת את ממוצע המספרים בסוגריים.. מהי תוצאת הפעולה (.7,.0,.)#....0 הפעולה החשבונית משמשת חנות גדולה

Διαβάστε περισσότερα

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם תזכורת: פולינום ממעלה או מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה p f ( m i ) = p m1 m5 תרגיל: נתון עבור x] f ( x) Z[ ראשוני שקיימים 5 מספרים שלמים שונים שעבורם p x f ( x ) f ( ) = נניח בשלילה ש הוא

Διαβάστε περισσότερα

פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( )

פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( ) פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד a d U c M ( יהי b (R) a b e ל (R M ( (אין צורך להוכיח). מצאו קבוצה פורשת ל. U בדקו ש - U מהווה תת מרחב ש a d U M (R) Sp,,, c a e

Διαβάστε περισσότερα

ל הזכויות שמורות לדפנה וסטרייך

ל הזכויות שמורות לדפנה וסטרייך מרובע שכל זוג צלעות נגדיות בו שוות זו לזו נקרא h באיור שלעיל, הצלעות ו- הן צלעות נגדיות ומתקיים, וכן הצלעות ו- הן צלעות נגדיות ומתקיים. תכונות ה כל שתי זוויות נגדיות שוות זו לזו. 1. כל שתי צלעות נגדיות

Διαβάστε περισσότερα

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012)

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 6 נושא: תחשיב הפסוקים: הפונקציה,val גרירה לוגית, שקילות לוגית 1. כיתבו טבלאות אמת לפסוקים הבאים: (ג) r)).((p q) r) ((p r) (q p q r (p

Διαβάστε περισσότερα

תרגיל 13 משפטי רול ולגראנז הערות

תרגיל 13 משפטי רול ולגראנז הערות Mthemtics, Summer 20 / Exercise 3 Notes תרגיל 3 משפטי רול ולגראנז הערות. האם קיים פתרון למשוואה + x e x = בקרן )?(0, (רמז: ביחרו x,f (x) = e x הניחו שיש פתרון בקרן, השתמשו במשפט רול והגיעו לסתירה!) פתרון

Διαβάστε περισσότερα

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון.

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון. Charles Augustin COULOMB (1736-1806) קולון חוק חוקקולון, אשרנקראעלשםהפיזיקאיהצרפתישארל-אוגוסטיןדהקולוןשהיהאחדהראשוניםשחקרבאופןכמותיאתהכוחותהפועלים ביןשניגופיםטעונים. מדידותיוהתבססועלמיתקןהנקראמאזניפיתול.

Διαβάστε περισσότερα

אי וודאות המשך תורת היצרן טכנולוגיה ופונק' ייצור

אי וודאות המשך תורת היצרן טכנולוגיה ופונק' ייצור אי וודאות המשך תורת היצרן טכנולוגיה ופונק' ייצור 1 2 בעיית הביטוח פתרון אלגברי ב "מישור העושר" בעיית המקסימיזציהשהפרט פותר הינה : Max p 1u(10 -γk+k)+p 2u(40 -γk) K והשוואה תנאי הסדר הראשון מתקבל מגזירה

Διαβάστε περισσότερα

הכנסה במוצרים היצע העבודה ופנאי תצרוכת על פני זמן נושאי השיעור קו התקציב, פונקציות הביקוש, היצע וביקוש הפרט סטאטיקה השוואתית

הכנסה במוצרים היצע העבודה ופנאי תצרוכת על פני זמן נושאי השיעור קו התקציב, פונקציות הביקוש, היצע וביקוש הפרט סטאטיקה השוואתית הכנסה במוצרים היצע העבודה ופנאי תצרוכת על פני זמן נושאי השיעור הכנסה במוצרים קו התקציב פונקציות הביקוש היצע וביקוש הפרט סטאטיקה השוואתית היצע העבודה ופנאי קו התקציב היצע העבודה תרחישים שונים תצרוכת על

Διαβάστε περισσότερα

חורף תש''ע פתרון בחינה סופית מועד א'

חורף תש''ע פתרון בחינה סופית מועד א' מד''ח 4 - חורף תש''ע פתרון בחינה סופית מועד א' ( u) u u u < < שאלה : נתונה המד''ח הבאה: א) ב) ג) לכל אחד מן התנאים המצורפים בדקו האם קיים פתרון יחיד אינסוף פתרונות או אף פתרון אם קיים פתרון אחד או יותר

Διαβάστε περισσότερα

אוניברסיטת בן גוריון מבוא לכלכלה א' פתרונות התרגילים וסיכומי התרגולים תשע"ד מתרגל: נאור שימול

אוניברסיטת בן גוריון מבוא לכלכלה א' פתרונות התרגילים וסיכומי התרגולים תשעד מתרגל: נאור שימול אוניברסיטת בן גוריון מבוא לכלכלה א' פתרונות התרגילים וסיכומי התרגולים תשע"ד מתרגל: נאור שימול - תרגיל 1 עקומת תמורה והוצאות אלטרנטיביות שאלה 1 להלן נתונים על מספר נקודות הנמצאות על עקומת התמורה של מסעדה

Διαβάστε περισσότερα

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx דפי נוסחאות I גבולות נאמר כי כך שלכל δ קיים > ε לכל > lim ( ) L המקיים ( ) מתקיים L < ε הגדרת הגבול : < < δ lim ( ) lim ורק ( ) משפט הכריך (סנדוויץ') : תהיינה ( ( ( )g ( )h פונקציות המוגדרות בסביבה נקובה

Διαβάστε περισσότερα

אוסף תרגילים בקורס "מבוא לכלכלה למהנדסים" (51605)

אוסף תרגילים בקורס מבוא לכלכלה למהנדסים (51605) .1 אוסף תרגילים בקורס "מבוא לכלכלה למהנדסים" (51605) חלק א' תרגילי כיתה עקומת התמורה, הוצאה אלטרנטיבית 1.1 במשק "המילניום השלישי" קיימים שלושה סוגי פועלים. סוג א' (מסוג זה ישנם פועלים) שכל אחד מהם מסוגל

Διαβάστε περισσότερα

Joseph Louis Francois Bertrand,

Joseph Louis Francois Bertrand, תחרותביןמעטים ברטראנד קורנו שוב... תחרותמונופוליסטית עקומתביקוששבורה תחרותמיקום-מחיר הוטלינג קוישר סאלופ מעגל Joseh Louis Francois Bertrand 8-900 מודל ברטראנד תיאורהסביבה ההנחות מושגהפתרון חישובהפתרון

Διαβάστε περισσότερα

מבוא מונופול - נושאים הסיבות להיווצרות מונופול בלעדיות, פטנט, זיכיונות ייצור, מונופול טבעי בעיית המונופול במישור ביקוש היצע הצגה גראפית ואלגברית האינד

מבוא מונופול - נושאים הסיבות להיווצרות מונופול בלעדיות, פטנט, זיכיונות ייצור, מונופול טבעי בעיית המונופול במישור ביקוש היצע הצגה גראפית ואלגברית האינד מונופול 1 מבוא מונופול - נושאים הסיבות להיווצרות מונופול בלעדיות, פטנט, זיכיונות ייצור, מונופול טבעי בעיית המונופול במישור ביקוש היצע הצגה גראפית ואלגברית האינדקס של לרנר, MARK UP PRICING בעיית המונופול

Διαβάστε περισσότερα

c>150 c<50 50<c< <c<150

c>150 c<50 50<c< <c<150 מוצרים ציבוריים דוגמה ראובןושמעוןשותפיםלדירה. הםשוקליםלקנותטלוויזיהלסלוןהמשותף. ראובןמוכןלשלםעד 00 עבורהטלוויזיה. שמעוןמוכןלשלםעד 50 עבורהטלוויזיה. אפשרלקנותטלוויזיהב- c. האם כדאי להם לקנות אותה? תלוי

Διαβάστε περισσότερα

gcd 24,15 = 3 3 =

gcd 24,15 = 3 3 = מחלק משותף מקסימאלי משפט אם gcd a, b = g Z אז קיימים x, y שלמים כך ש.g = xa + yb במלים אחרות, אם ה כך ש.gcd a, b = xa + yb gcd,a b של שני משתנים הוא מספר שלם, אז קיימים שני מקדמים שלמים כאלה gcd 4,15 =

Διαβάστε περισσότερα

גבול ורציפות של פונקציה סקלרית שאלות נוספות

גבול ורציפות של פונקציה סקלרית שאלות נוספות 08 005 שאלה גבול ורציפות של פונקציה סקלרית שאלות נוספות f ( ) f ( ) g( ) f ( ) ו- lim f ( ) ו- ( ) (00) lim ( ) (00) f ( בסביבת הנקודה (00) ) נתון: מצאו ) lim g( ( ) (00) ננסה להיעזר בכלל הסנדביץ לשם כך

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 5

מתמטיקה בדידה תרגול מס' 5 מתמטיקה בדידה תרגול מס' 5 נושאי התרגול: פונקציות 1 פונקציות הגדרה 1.1 פונקציה f מ A (התחום) ל B (הטווח) היא קבוצה חלקית של A B המקיימת שלכל a A קיים b B יחיד כך ש. a, b f a A.f (a) = ιb B. a, b f או, בסימון

Διαβάστε περισσότερα

ניהול תמיכה מערכות שלבים: DFfactor=a-1 DFt=an-1 DFeror=a(n-1) (סכום _ הנתונים ( (מספר _ חזרות ( (מספר _ רמות ( (סכום _ ריבועי _ כל _ הנתונים (

ניהול תמיכה מערכות שלבים: DFfactor=a-1 DFt=an-1 DFeror=a(n-1) (סכום _ הנתונים ( (מספר _ חזרות ( (מספר _ רמות ( (סכום _ ריבועי _ כל _ הנתונים ( תכנון ניסויים כאשר קיימת אישביעות רצון מהמצב הקיים (למשל כשלים חוזרים בבקרת תהליכים סטטיסטית) נחפש דרכים לשיפור/ייעול המערכת. ניתן לבצע ניסויים על גורם בודד, שני גורמים או יותר. ניסויים עם גורם בודד: נבצע

Διαβάστε περισσότερα

תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשע"ב זהויות טריגונומטריות

תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשעב זהויות טריגונומטריות תרגול חזרה זהויות טריגונומטריות si π α) si α π α) α si π π ), Z si α π α) t α cot π α) t α si α cot α α α si α si α + α siα ± β) si α β ± α si β α ± β) α β si α si β si α si α α α α si α si α α α + α si

Διαβάστε περισσότερα

שאלה 1 V AB פתרון AB 30 R3 20 R

שאלה 1 V AB פתרון AB 30 R3 20 R תרגילים בתורת החשמל כתה יג שאלה א. חשב את המתח AB לפי משפט מילמן. חשב את הזרם בכל נגד לפי המתח שקיבלת בסעיף א. A 60 0 8 0 0.A B 8 60 0 0. AB 5. v 60 AB 0 0 ( 5.) 0.55A 60 א. פתרון 0 AB 0 ( 5.) 0 0.776A

Διαβάστε περισσότερα

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות 25 בדצמבר 2016 תזכורת: תהי ) n f ( 1, 2,..., פונקציה המוגדרת בסביבה של f. 0 גזירה חלקית לפי משתנה ) ( = 0, אם קיים הגבול : 1 0, 2 0,..., בנקודה n 0 i f(,..,n,).lim

Διαβάστε περισσότερα

b 1 b 2 c 0 > c 1 > c 2 רציונל הפתרון: הגדרות: G j b j b j+1 *Q -גודל מנה אופטימלית.

b 1 b 2 c 0 > c 1 > c 2 רציונל הפתרון: הגדרות: G j b j b j+1 *Q -גודל מנה אופטימלית. תרגול - IV מודלים עם הנחה לכמויות הנחה על כל הכמות: המשמעות: בהתאם לגודל המנה, נקבע מחיר ליחידה c, ובמחיר זה נרכשת כל הכמות. TC מבחינה גרפית: b b b תחום תחום תחום c > c > c רציונל הפתרון: לכל תחום מחשבים

Διαβάστε περισσότερα

הכנסה במוצרים היצע העבודה ופנאי

הכנסה במוצרים היצע העבודה ופנאי הכנסה במוצרים היצע העבודה ופנאי נושאי השיעור הכנסה במוצרים קו התקציב פונקציות הביקוש היצע הפרט סטאטיקה השוואתית היצע העבודה ופנאי קו התקציב היצע העבודה תרחישים שונים דיון קצר האם מודל ההכנסה במוצרים סביר?

Διαβάστε περισσότερα

Logic and Set Theory for Comp. Sci.

Logic and Set Theory for Comp. Sci. 234293 - Logic and Set Theory for Comp. Sci. Spring 2008 Moed A Final [partial] solution Slava Koyfman, 2009. 1 שאלה 1 לא נכון. דוגמא נגדית מפורשת: יהיו } 2,(p 1 p 2 ) (p 2 p 1 ).Σ 2 = {p 2 p 1 },Σ 1 =

Διαβάστε περισσότερα

David Hanhart א. הגדרות: אחרים. מה לייצר וכמה לייצר?

David Hanhart א. הגדרות: אחרים. מה לייצר וכמה לייצר? עותק זה הועלה לאתר אגודת הסטודנטים. אין להעלותו לאף אתר אחר או למכור אותו ללא אישור מפורש של המחבר. להערות מקצועיות או תיקונים, פנו לחברים שלכם שבאמת הולכים לשיעורים סיכום קורס מיקרו כלכלה: א. ב. ג. פרק

Διαβάστε περισσότερα

קיום ויחידות פתרונות למשוואות דיפרנציאליות

קיום ויחידות פתרונות למשוואות דיפרנציאליות קיום ויחידות פתרונות למשוואות דיפרנציאליות 1 מוטיבציה למשפט הקיום והיחידות אנו יודעים לפתור משוואות דיפרנציאליות ממחלקות מסוימות, כמו משוואות פרידות או משוואות לינאריות. עם זאת, קל לכתוב משוואה דיפרנציאלית

Διαβάστε περισσότερα

סיכום- בעיות מינימוםמקסימום - שאלון 806

סיכום- בעיות מינימוםמקסימום - שאלון 806 סיכום- בעיות מינימוםמקסימום - שאלון 806 בבעיותמינימום מקסימוםישלחפשאתנקודותהמינימוםהמוחלטוהמקסימוםהמוחלט. בשאלות מינימוםמקסימוםחובהלהראותבעזרתטבלה אובעזרתנגזרתשנייהשאכן מדובר עלמינימוםאומקסימום. לצורךקיצורהתהליך,

Διαβάστε περισσότερα

c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V )

c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V ) הצגות של חבורות סופיות c ארזים 6 בינואר 017 1 משפט ברנסייד משפט 1.1 ברנסייד) יהיו p, q ראשוניים. תהי G חבורה מסדר.a, b 0,p a q b אזי G פתירה. הוכחה: באינדוקציה על G. אפשר להניח כי > 1 G. נבחר תת חבורה

Διαβάστε περισσότερα

אינפי - 1 תרגול בינואר 2012

אינפי - 1 תרגול בינואר 2012 אינפי - תרגול 4 3 בינואר 0 רציפות במידה שווה הגדרה. נאמר שפונקציה f : D R היא רציפה במידה שווה אם לכל > 0 ε קיים. f(x) f(y) < ε אז x y < δ אם,x, y D כך שלכל δ > 0 נביט במקרה בו D הוא קטע (חסום או לא חסום,

Διαβάστε περισσότερα

תורת המחירים ב' 57308

תורת המחירים ב' 57308 תורת המחירים ב' 57308 חיים שחור סיכומי הרצאות של פרופ' דוד ג'נסוב י"א אדר תשע"ב (שעור ) ברוכים הבאים. ליעד יהיה אחראי על השליש האחרון של הקורס. הקורס הוא הרחבה של מחירים א'. אם היה לכם קשה, מומלץ שתעברו

Διαβάστε περισσότερα

PDF created with pdffactory trial version

PDF created with pdffactory trial version הקשר בין שדה חשמלי לפוטנציאל חשמלי E נחקור את הקשר, עבור מקרה פרטי, בו יש לנו שדה חשמלי קבוע. נתון שדה חשמלי הקבוע במרחב שגודלו שווה ל. E נסמן שתי נקודות לאורך קו שדה ו המרחק בין הנקודות שווה ל x. המתח

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשעד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, 635865 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1. סדרה חשבונית שיש בה n איברים...2 3. האיבר

Διαβάστε περισσότερα

The No Arbitrage Theorem for Factor Models ג'רמי שיף - המחלקה למתמטיקה, אוניברסיטת בר-אילן

The No Arbitrage Theorem for Factor Models ג'רמי שיף - המחלקה למתמטיקה, אוניברסיטת בר-אילן .. The No Arbitrage Theorem for Factor Models ג'רמי שיף - המחלקה למתמטיקה, אוניברסיטת בר-אילן 03.01.16 . Factor Models.i = 1,..., n,r i נכסים, תשואות (משתנים מקריים) n.e[f j ] נניח = 0.j = 1,..., d,f j

Διαβάστε περισσότερα

הגדרה: מצבים k -בני-הפרדה

הגדרה: מצבים k -בני-הפרדה פרק 12: שקילות מצבים וצמצום מכונות לעי תים קרובות, תכנון המכונה מתוך סיפור המעשה מביא להגדרת מצבים יתי רים states) :(redundant הפונקציה שהם ממלאים ניתנת להשגה באמצעו ת מצבים א חרים. כיוון שמספר רכיבי הזיכרון

Διαβάστε περισσότερα

תאריך עדכון אחרון: 27 בפברואר ניתוח לשיעורין analysis) (amortized הוא טכניקה לניתוח זמן ריצה לסדרת פעולות, אשר מאפשר קבלת

תאריך עדכון אחרון: 27 בפברואר ניתוח לשיעורין analysis) (amortized הוא טכניקה לניתוח זמן ריצה לסדרת פעולות, אשר מאפשר קבלת תרגול 3 ניתוח לשיעורין תאריך עדכון אחרון: 27 בפברואר 2011. ניתוח לשיעורין analysis) (amortized הוא טכניקה לניתוח זמן ריצה לסדרת פעולות, אשר מאפשר קבלת חסמי זמן ריצה נמוכים יותר מאשר חסמים המתקבלים כאשר

Διαβάστε περισσότερα

תרגול מס' 6 פתרון מערכת משוואות ליניארית

תרגול מס' 6 פתרון מערכת משוואות ליניארית אנליזה נומרית 0211 סתיו - תרגול מס' 6 פתרון מערכת משוואות ליניארית נרצה לפתור את מערכת המשוואות יהי פתרון מקורב של נגדיר את השארית: ואת השגיאה: שאלה 1: נתונה מערכת המשוואות הבאה: הערך את השגיאה היחסית

Διαβάστε περισσότερα

TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים

TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים TECHNION Iael Intitute of Technology, Faculty of Mechanical Engineeing מבוא לבקרה (034040) גליון תרגילי בית מס 5 d e C() y P() - ציור : דיאגרמת הבלוקים? d(t) ו 0 (t) (t),c() 3 +,P() + ( )(+3) שאלה מס נתונה

Διαβάστε περισσότερα

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק יום א 14 : 00 15 : 00 בניין 605 חדר 103 http://u.cs.biu.ac.il/ brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק 29/11/2017 1 הגדרת קבוצת הנוסחאות הבנויות היטב באינדוקציה הגדרה : קבוצת הנוסחאות הבנויות

Διαβάστε περισσότερα

מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1

מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1 1 טורים כלליים 1. 1 התכנסות בהחלט מתכנס. מתכנס בהחלט אם n a הגדרה.1 אומרים שהטור a n משפט 1. טור מתכנס בהחלט הוא מתכנס. הוכחה. נוכיח עם קריטריון קושי. יהי אפסילון גדול מ- 0, אז אנחנו יודעים ש- n N n>m>n

Διαβάστε περισσότερα

{ : Halts on every input}

{ : Halts on every input} אוטומטים - תרגול 13: רדוקציות, משפט רייס וחזרה למבחן E תכונה תכונה הינה אוסף השפות מעל.(property המקיימות תנאים מסוימים (תכונה במובן של Σ תכונה לא טריביאלית: תכונה היא תכונה לא טריוויאלית אם היא מקיימת:.

Διαβάστε περισσότερα

דיאגמת פאזת ברזל פחמן

דיאגמת פאזת ברזל פחמן דיאגמת פאזת ברזל פחמן הריכוז האוטקטי הריכוז האוטקטוידי גבול המסיסות של פריט היווצרות פרליט מיקרו-מבנה של החומר בפלדה היפר-אוטקטואידית והיפו-אוטקטוידית. ככל שמתקרבים יותר לריכוז האוטקטואידי, מקבלים מבנה

Διαβάστε περισσότερα

התנהגות תחרותית בכלכלת חליפין-ייצור בכלכלתחליפין-ייצורעםבעלותפרטיתישפרטיםופירמות. לכל פרטישהעדפות, סלתחילישלמוצרים (בדרךכללגורמיייצור) ואחוזיבעלותעלהפ

התנהגות תחרותית בכלכלת חליפין-ייצור בכלכלתחליפין-ייצורעםבעלותפרטיתישפרטיםופירמות. לכל פרטישהעדפות, סלתחילישלמוצרים (בדרךכללגורמיייצור) ואחוזיבעלותעלהפ שיווי משקל תחרותי במשק עם ייצור משפטי הרווחה 1 התנהגות תחרותית בכלכלת חליפין-ייצור בכלכלתחליפין-ייצורעםבעלותפרטיתישפרטיםופירמות. לכל פרטישהעדפות, סלתחילישלמוצרים (בדרךכללגורמיייצור) ואחוזיבעלותעלהפירמותהשונות.

Διαβάστε περισσότερα

אלגברה ליניארית (1) - תרגיל 6

אלגברה ליניארית (1) - תרגיל 6 אלגברה ליניארית (1) - תרגיל 6 התרגיל להגשה עד יום חמישי (12.12.14) בשעה 16:00 בתא המתאים בבניין מתמטיקה. נא לא לשכוח פתקית סימון. 1. עבור כל אחד מתת המרחבים הבאים, מצאו בסיס ואת המימד: (א) 3)} (0, 6, 3,,

Διαβάστε περισσότερα

יווקיינ לש תוביציה ןוירטירק

יווקיינ לש תוביציה ןוירטירק יציבות מגבר שרת הוא מגבר משוב. בכל מערכת משוב קיימת בעיית יציבות מהבחינה הדינמית (ולא מבחינה נקודת העבודה). חשוב לוודא שהמגבר יציב על-מנת שלא יהיו נדנודים. קריטריון היציבות של נייקוויסט: נתונה נערכת המשוב

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 12

מתמטיקה בדידה תרגול מס' 12 מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: נוסחאות נסיגה נוסחאות נסיגה באמצעות פונקציות יוצרות נוסחאות נסיגה באמצעות פולינום אופייני נוסחאות נסיגה לעתים מפורש לבעיה קומבינטורית אינו ידוע, אך יחסית קל להגיע

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים:

לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשעו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים: לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( 2016 2015 )............................................................................................................. חלק ראשון: שאלות שאינן להגשה.1

Διαβάστε περισσότερα

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ משוואות רקורסיביות הגדרה: רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים למשל: T = Θ 1 if = 1 T + Θ if > 1 יונתן יניב, דוד וייץ 1 דוגמא נסתכל על האלגוריתם הבא למציאת

Διαβάστε περισσότερα

הרצאה. α α פלוני, וכדומה. הזוויות α ל- β שווה ל-

הרצאה. α α פלוני, וכדומה. הזוויות α ל- β שווה ל- מ'' ל'' Deprmen of Applied Mhemics Holon Acdemic Insiue of Technology PROBABILITY AND STATISTICS Eugene Knzieper All righs reserved 4/5 חומר לימוד בקורס "הסתברות וסטטיסטיקה" מאת יוג'ין קנציפר כל הזכויות

Διαβάστε περισσότερα

(Augmented Phillips Curve

(Augmented Phillips Curve עקומת פיליפס W W u בשנת 958 הכלכלן האנגלי hllps פירסם עבודה שבה חקר את הקשר בין שיעור השינוי בשכר הנומינלי לבין שיעור האבטלה באנגליה בין השנים 86 עד 9. התוצאות הראו א קשר הפוך בין שני המשתנים, כלומר ציצמום

Διαβάστε περισσότερα

תורת המחירים א תשע"ב

תורת המחירים א תשעב תורת המחירים א תשע"ב חוברת תרגילים הקמפוס האקדמי אחווה מרצה: ד"ר ניר דגן התרגילים בחוברת נכתבו ע"י פרופ' דוד וטשטיין ומרצים נוספים מהקמפוס האקדמי אחווה ואוניברסיטת בן-גוריון ו- תרגיל 1 העדפות הצרכן ומגבלת

Διαβάστε περισσότερα

תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME

תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME הנדסת המישור - תרגילים הכנה לבגרות תרגילים הנדסת המישור - תרגילים הכנה לבגרות באמצעות Q תרגיל 1 מעגל העובר דרך הקודקודים ו- של המקבילית ו- חותך את האלכסונים שלה בנקודות (ראה ציור) מונחות על,,, הוכח כי

Διαβάστε περισσότερα

קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל "לוח" יש את אותה כמות מטען, אך הסימנים הם הפוכים.

קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל לוח יש את אותה כמות מטען, אך הסימנים הם הפוכים. קבל קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל "לוח" יש את אותה כמות מטען, אך הסימנים הם הפוכים. על לוח אחד מטען Q ועל לוח שני מטען Q. הפוטנציאל על כל לוח הוא

Διαβάστε περισσότερα

פתרונות , כך שאי השוויון המבוקש הוא ברור מאליו ולכן גם קודמו תקף ובכך מוכחת המונוטוניות העולה של הסדרה הנתונה.

פתרונות , כך שאי השוויון המבוקש הוא ברור מאליו ולכן גם קודמו תקף ובכך מוכחת המונוטוניות העולה של הסדרה הנתונה. בחינת סיווג במתמטיקה.9.017 פתרונות.1 סדרת מספרים ממשיים } n {a נקראת מונוטונית עולה אם לכל n 1 מתקיים n+1.a n a האם הסדרה {n a} n = n היא מונוטונית עולה? הוכיחו תשובתכם. הסדרה } n a} היא אכן מונוטונית

Διαβάστε περισσότερα

x a x n D f (iii) x n a ,Cauchy

x a x n D f (iii) x n a ,Cauchy גבולות ורציפות גבול של פונקציה בנקודה הגדרה: קבוצה אשר מכילה קטע פתוח שמכיל את a תקרא סביבה של a. קבוצה אשר מכילה קטע פתוח שמכיל את a אך לא מכילה את a עצמו תקרא סביבה מנוקבת של a. יהו a R ו f פונקציה מוגדרת

Διαβάστε περισσότερα

לבחינה בסטטיסטיקה ומימון נובמבר 2102

לבחינה בסטטיסטיקה ומימון נובמבר 2102 כ) כ) הכנה לבחינה בסטטיסטיקה ומימון נובמבר 10 שאלות חמות לקראת בחינת רשות ניירות ערך רבים מהתפקידים בשוק ההון מחייבים רישיון כל שהוא, אם יעוץ השקעות, ניהול השקעות יעוץ פנסיוני או סוכני הביטוח. על המתעניינים

Διαβάστε περισσότερα

תרגול משפט הדיברגנץ. D תחום חסום וסגור בעל שפה חלקה למדי D, ותהי F פו' וקטורית :F, R n R n אזי: נוסחת גרין I: הוכחה: F = u v כאשר u פו' סקלרית:

תרגול משפט הדיברגנץ. D תחום חסום וסגור בעל שפה חלקה למדי D, ותהי F פו' וקטורית :F, R n R n אזי: נוסחת גרין I: הוכחה: F = u v כאשר u פו' סקלרית: משפט הדיברגנץ תחום חסום וסגור בעל שפה חלקה למדי, ותהי F פו' וקטורית :F, R n R n אזי: div(f ) dxdy = F, n dr נוסחת גרין I: uδv dxdy = u v n dr u, v dxdy הוכחה: F = (u v v, u x y ) F = u v כאשר u פו' סקלרית:

Διαβάστε περισσότερα

סדרות - תרגילים הכנה לבגרות 5 יח"ל

סדרות - תרגילים הכנה לבגרות 5 יחל סדרות - הכנה לבגרות 5 יח"ל 5 יח"ל סדרות - הכנה לבגרות איברים ראשונים בסדרה) ) S מסמן סכום תרגיל S0 S 5, S6 בסדרה הנדסית נתון: 89 מצא את האיבר הראשון של הסדרה תרגיל גוף ראשון, בשנייה הראשונה לתנועתו עבר

Διαβάστε περισσότερα

הרצאה 7: CTMC הסתברויות גבוליות, הפיכות בזמן, תהליכי לידה ומוות

הרצאה 7: CTMC הסתברויות גבוליות, הפיכות בזמן, תהליכי לידה ומוות הרצאה 7: CTMC הסתברויות גבוליות, הפיכות בזמן, תהליכי לידה ומוות משואות קולמוגורוב pi, j ( t + ) = pi, j ( t)( rj ) + pi, k ( t) rk, j k j pi, j ( + t) = ( ri ) pi, j ( t) + ri, k pk, j ( t) k j P ( t)

Διαβάστε περισσότερα

s ק"מ קמ"ש מ - A A מ - מ - 5 p vp v=

s קמ קמש מ - A A מ - מ - 5 p vp v= את זמני הליכת הולכי הרגל עד הפגישות שלהם עם רוכב האופניים (שעות). בגרות ע מאי 0 מועד קיץ מבוטל שאלון 5006 מהירות - v קמ"ש t, א. () נסמן ב- p נכניס את הנתונים לטבלה מתאימה: רוכב אופניים עד הפגישה זמן -

Διαβάστε περισσότερα

ריאקציות כימיות

ריאקציות כימיות ריאקציות כימיות 1.5.15 1 הקדמה ריאקציה כימית היא תהליך שבו מולקולות (הנקראות מגיבים עוברות שינוי ויוצרות מולקולות אחרות (הנקראות תוצרים. הריאקציה יכולה להתרחש בשני הכיוונים. לפני ההגעה לשיווי משקל יהיה

Διαβάστε περισσότερα

אלגברה מודרנית פתרון שיעורי בית 6

אלגברה מודרנית פתרון שיעורי בית 6 אלגברה מודרנית פתרון שיעורי בית 6 15 בינואר 016 1. יהי F שדה ויהיו q(x) p(x), שני פולינומים מעל F. מצאו פולינומים R(x) S(x), כך שמתקיים R(x),p(x) = S(x)q(x) + כאשר deg(q),deg(r) < עבור המקרים הבאים: (תזכורת:

Διαβάστε περισσότερα

הרצאה תרגילים סמינר תורת המספרים, סמסטר אביב פרופ' יעקב ורשבסקי

הרצאה תרגילים סמינר תורת המספרים, סמסטר אביב פרופ' יעקב ורשבסקי הרצאה תרגילים סמינר תורת המספרים, סמסטר אביב 2011 2010 פרופ' יעקב ורשבסקי אסף כץ 15//11 1 סמל לזנדר יהי מספר שלם קבוע, ו K שדה גלובלי המכיל את חבורת שורשי היחידה מסדר µ. תהי S קבוצת הראשוניים הארכימדיים

Διαβάστε περισσότερα

מכניקה אנליטית תרגול 6

מכניקה אנליטית תרגול 6 מכניקה אנליטית תרגול 6 1 אלימינציה של קואורדינטות ציקליות כאשר יש בבעיה קואורדינטה ציקלית אחת או יותר, לעתים נרצה לכתוב פעולה חדשה (או, באופן שקול, לגראנז'יאן חדש) אשר לא כולל את הקואורדינטות הללו, וממנו

Διαβάστε περισσότερα

מימון דף נוסחאות + = = 1+ 4 rnekova Revonit. 1 (1 d) reffective. effective. effective. reff. Simple

מימון דף נוסחאות + = = 1+ 4 rnekova Revonit. 1 (1 d) reffective. effective. effective. reff. Simple מימון דף נוסחאות ריבית אפקטיבית ריבית פשוטה = ריבית נקובה = ריבית נומינאלית. המעבר מריבית נקובה לריבית אפקטיבית המחושבת ב N תקופות: rnekov + = + reffective N וכאשר N שואף לאינסוף (הריבית מחושבת באופן רציף):

Διαβάστε περισσότερα

תרגיל 7 פונקציות טריגונומטריות הערות

תרגיל 7 פונקציות טריגונומטריות הערות תרגיל 7 פונקציות טריגונומטריות הערות. פתרו את המשוואות הבאות. לא מספיק למצוא פתרון אחד יש למצוא את כולם! sin ( π (א) = x sin (ב) = x cos (ג) = x tan (ד) = x) (ה) = tan x (ו) = 0 x sin (x) + sin (ז) 3 =

Διαβάστε περισσότερα

מינימיזציה של DFA מינימיזציה של הקנוני שאותה ראינו בסעיף הקודם. בנוסף, נוכיח את יחידות האוטומט המינימלי בכך שנראה שכל אוטומט על ידי שינוי שמות

מינימיזציה של DFA מינימיזציה של הקנוני שאותה ראינו בסעיף הקודם. בנוסף, נוכיח את יחידות האוטומט המינימלי בכך שנראה שכל אוטומט על ידי שינוי שמות מינימיזציה של DFA L. הוא אוטמומט מינימלי עבור L של שפה רגולרית A ראינו בסוף הסעיף הקודם שהאוטומט הקנוני קיים A DFA בכך הוכחנו שלכל שפה רגולרית קיים אוטומט מינמלי המזהה אותה. זה אומר שלכל נקרא A A לאוטומט

Διαβάστε περισσότερα

ניהול סיכום הרבון ""ר ותמיכה באחזקה אחזקה MTBF = 1. t = i i MTTR זמינות BTBM. i i

ניהול סיכום הרבון ר ותמיכה באחזקה אחזקה MTBF = 1. t = i i MTTR זמינות BTBM. i i הקשר בין אחזקה לבין אמינות: דד// אחזקה כדי למצוא משך פעולה בטרם יש צורך לבצע אחזקה במערכת בעלת אמינות או MTBF באמינות נדרשת (בין ל- ) יש לבצע את החישוב הבא: ln r( ln r( MTBF MTBF s MTTR s ( T ) זמן ממוצע

Διαβάστε περισσότερα

צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים

צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים מבוא: קבוצות מיוחדות של מספרים ממשיים קבוצות של מספרים ממשיים צעד ראשון להצטיינות קבוצה היא אוסף של עצמים הנקראים האיברים של הקבוצה אנו נתמקד בקבוצות של מספרים ממשיים בדרך כלל מסמנים את הקבוצה באות גדולה

Διαβάστε περισσότερα

3-9 - a < x < a, a < x < a

3-9 - a < x < a, a < x < a 1 עמוד 59, שאלהמס', 4 סעיףג' תיקוני הקלדה שאלון 806 צריך להיות : ג. מצאאתמקומושלאיברבסדרהזו, שקטןב- 5 מסכוםכלהאיבריםשלפניו. עמוד 147, שאלהמס' 45 ישלמחוקאתהשאלה (מופיעהפעמיים) עמוד 184, שאלהמס', 9 סעיףב',תשובה.

Διαβάστε περισσότερα

ויעילות הוצאת * החומר * 1

ויעילות הוצאת * החומר * 1 ויעילות מוצרים ציבוריים פרופסור שמואל ניצן הוצאת העדפה ובחירה חברתית", בספר: " על פרק טט' ברובו מבוסס חומר זהה *.2007 האוניברסיטה הפתוחה, הפתוחה) הזכויות שמורות לאונילאוניברסיטה (כל הקדמה: נושאי הדיון

Διαβάστε περισσότερα

לדוגמא : dy dx. xdx = x. cos 1. cos. x dx 2. dx = 2xdx לסיכום: 5 sin 5 1 = + ( ) הוכחה: [ ] ( ) ( )

לדוגמא : dy dx. xdx = x. cos 1. cos. x dx 2. dx = 2xdx לסיכום: 5 sin 5 1 = + ( ) הוכחה: [ ] ( ) ( ) 9. חשבון אינטגרלי. עד כה עסקנו בבעיות של מציאת הנגזרת של פונקציה נתונה. נשאלת השאלה בהינתן נגזרת האם נוכל למצוא את הפונקציה המקורית (הפונקציה שנגזרתה נתונה)? זוהי שאלה קשה יותר, חשבון אינטגרלי דן בבעיה

Διαβάστε περισσότερα

Copyright Dan Ben-David, All Rights Reserved. דן בן-דוד אוניברסיטת תל-אביב נושאים 1. מבוא 5. אינפלציה

Copyright Dan Ben-David, All Rights Reserved. דן בן-דוד אוניברסיטת תל-אביב נושאים 1. מבוא 5. אינפלציה נושאים 1. מבוא 2. היצע קיינסיאני וקלאסי מאקרו בב' דן בן-דוד אוניברסיטת תל-אביב 3. המודל הקיינסיאני א. שוק המוצרים ב. שוק הכסף ג. מודל S-L במשק סגור ד. מודל S-L במשק פתוח שער חליפין נייד או קבוע עם או בלי

Διαβάστε περισσότερα

אוסף שאלות מס. 3 פתרונות

אוסף שאלות מס. 3 פתרונות אוסף שאלות מס. 3 פתרונות שאלה מצאו את תחום ההגדרה D R של כל אחת מהפונקציות הבאות, ושרטטו אותו במישור. f (x, y) = x + y x y, f 3 (x, y) = f (x, y) = xy x x + y, f 4(x, y) = xy x y f 5 (x, y) = 4x + 9y 36,

Διαβάστε περισσότερα

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות 1. מצאו צורה דיסיונקטיבית נורמלית קנונית לפסוקים הבאים: (ג)

Διαβάστε περισσότερα

תכנית הכשרה מסחר באופציות

תכנית הכשרה מסחר באופציות תכנית הכשרה מסחר באופציות שיעור 5 B&S)) Black - Scholes מודל B&S תכונות אופציות מודל בלק ושולס B&S מודל כלכלי לתמחור אופציות שפותח ע"י צמד המתמטיקאים פישר בלאק ומיירון שולס בתחילת שנות ה- 70 וזיכה את המחברים

Διαβάστε περισσότερα

אלגברה לינארית (1) - פתרון תרגיל 11

אלגברה לינארית (1) - פתרון תרגיל 11 אלגברה לינארית ( - פתרון תרגיל דרגו את המטריצות הבאות לפי אלגוריתם הדירוג של גאוס (א R R4 R R4 R=R+R R 3=R 3+R R=R+R R 3=R 3+R 9 4 3 7 (ב 9 4 3 7 7 4 3 9 4 3 4 R 3 R R3=R3 R R 4=R 4 R 7 4 3 9 7 4 3 8 6

Διαβάστε περισσότερα

שם התלמיד/ה הכיתה שם בית הספר. Page 1 of 18

שם התלמיד/ה הכיתה שם בית הספר. Page 1 of 18 שם התלמיד/ה הכיתה שם בית הספר ה Page of 8 0x = 3x + שאלה פ תרו את המשוואה שלפניכם. x = תשובה: שאלה בבחירות למועצת תלמידים קיבל רן 300 קולות ונעמה קיבלה 500 קולות. מה היחס בין מספר הקולות שקיבל רן למספר

Διαβάστε περισσότερα

"קשר-חם" : לקידום שיפור וריענון החינוך המתמטי

קשר-חם : לקידום שיפור וריענון החינוך המתמטי הטכניון - מכון טכנולוגי לישראל המחלקה להוראת הטכנולוגיה והמדעים "קשר-חם" : לקידום שיפור וריענון החינוך המתמטי נושא: חקירת משוואות פרמטריות בעזרת גרפים הוכן ע"י: אביבה ברש. תקציר: בחומר מוצגת דרך לחקירת

Διαβάστε περισσότερα

( )( ) ( ) f : B C היא פונקציה חח"ע ועל מכיוון שהיא מוגדרת ע"י. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חח"ע אז ועל פי הגדרת

( )( ) ( ) f : B C היא פונקציה חחע ועל מכיוון שהיא מוגדרת עי. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חחע אז ועל פי הגדרת הרצאה 7 יהיו :, : C פונקציות, אז : C חח"ע ו חח"ע,אז א אם על ו על,אז ב אם ( על פי הגדרת ההרכבה )( x ) = ( )( x x, כךש ) x א יהיו = ( x ) x חח"ע נקבל ש מכיוון ש חח"ע נקבל ש מכיוון ש ( b) = c כך ש b ( ) (

Διαβάστε περισσότερα

קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים.

קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. א{ www.sikumuna.co.il מהי קבוצה? קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. קבוצה היא מושג יסודי במתמטיקה.התיאור האינטואיטיבי של קבוצה הוא אוסף של עצמים כלשהם. העצמים הנמצאים בקבוצה הם איברי הקבוצה.

Διαβάστε περισσότερα

כלכלה בדרך הקלה ספר תרגול בתורת המחירים א'

כלכלה בדרך הקלה ספר תרגול בתורת המחירים א' כלכלה בדרך הקלה ספר תרגול בתורת המחירים א' סטודנטים יקרים לפניכם ספר תרגילים בקורס תורת המחירים א' (נקרא גם מיקרו א' או תיאוריות ויישומים מיקרו). הספר הוא חלק מפרויקט חדשני וראשון מסוגו בארץ במקצוע זה,

Διαβάστε περισσότερα

אלגברה ליניארית 1 א' פתרון 2

אלגברה ליניארית 1 א' פתרון 2 אלגברה ליניארית א' פתרון 3 4 3 3 7 9 3. נשתמש בכתיבה בעזרת מטריצה בכל הסעיפים. א. פתרון: 3 3 3 3 3 3 9 אז ישנו פתרון יחיד והוא = 3.x =, x =, x 3 3 הערה: אפשר גם לפתור בדרך קצת יותר ארוכה, אבל מבלי להתעסק

Διαβάστε περισσότερα